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ABSTRACT

Codon Usage Preferences (CUPrefs) describe the unequal usage of synonymous codons at the gene,

genomic region or genome scale. Numerous indices have been developed to measure the CUPrefs of

a sequence. We introduce a normalized index to calculate CUPrefs called COUSIN for COdon Usage

Similarity INdex. This index compares the CUPrefs of a query against those of a reference dataset

and normalizes the output over a Null Hypothesis of random codon usage. COUSIN results can be

easily interpreted, quantitatively and qualitatively. We exemplify the use of COUSIN and highlight

its advantages with an analysis on the complete coding sequences of eight divergent genomes, two

of them with extreme nucleotide composition. Strikingly, COUSIN captures a hitherto unreported

bimodal distribution in CUPrefs in genes in the human and in the chicken genomes. We show that

this bimodality can be explained by the global nucleotide composition bias of the chromosome in

which the gene resides, and by the precise location within the chromosome. Our results highlight the

power of the COUSIN index and uncover unexpected characteristics of the CUPrefs in human and

chicken. An eponymous tool written in python3 to calculate COUSIN is available for online or local

use.

Keywords Codon Usage Bias, mutational bias, translational selection, nucleotide composition, amino acid composition,

codon adaptation index, bioinformatics, mutation-selection.
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1 Introduction

Translation of messenger RNAs (mRNA) into proteins is a central molecular biology process common to all forms1

of life. During translation, ribosomes proceed along the mRNA in steps of three nucleotides, called codons. While2

"reading" the mRNA, the ribosome allows pairing of a mRNA codon against the complementary nucleotide triplet on a3

transfer RNA (tRNA), catalysing the polymerisation of amino acids to synthesise peptides and proteins (Quax et al.,4

2015). 64 nucleotide triplets are available and, in the standard genetic code, 61 codons encode for the 20 standard amino5

acids (Belalov and Lukashev, 2013). Because of this asymmetry, certain groups of two, three, four or six codons encode6

for the same amino acid. Such groups of codons are known as "synonymous codons", and the existence of multiple7

coding alternatives for a single amino acid are often referred to as the degeneracy of the genetic code (Nirenberg and8

Matthaei, 1961; Khorana et al., 1966).9

Synonymous codons are not used with similar frequencies. This deviation from random use is known as Codon10

Usage Preferences (CUPrefs) or Codon Usage Bias (CUB). Deviations from random usage of synonymous codons11

occur between nucleotide stretches within a gene, between genes within a genome and between genomes in different12

organisms (Grantham et al., 1980; Carbone et al., 2003). Since codons are the units of information integration during13

translation, it was originally proposed for Escherichia coli that a connection may exist between CUPrefs and the14

overall efficiency of the translation process (Gouy and Gautier, 1982; Sharp and Li, 1987). Under this assumption, the15

presence of a given synonymous codon at a given location could be explained by natural selection (Grantham et al.,16

1980; Bennetzen and Hall, 1982; Sharp and Li, 1987). In rapidly growing unicellular organisms, variations in the17

tRNA pools have been hypothesised to fuel such evolutionary forces, supported by the fact that in these organisms the18

CUPrefs match well tRNA abundance in the cell (Ikemura, 1981; Akashi, 1994). Additionally, mutational bias shapes19

CUPrefs by modifying nucleotide frequencies and thereby codon frequencies (Knight et al., 2001; Urrutia and Hurst,20

2001; Roth et al., 2012), while GC-biased gene conversion leads to regional CUPrefs bias by promoting asymmetric21

GC-rich chromosome fragment replacement during meiotic recombination (Pouyet et al., 2017; Galtier et al., 2018).22

For example, in chromosome stretches with strong nucleotide composition bias, known as isochores in Vertebrates,23

differences in GC content may be the main driver of CUPrefs (Costantini et al., 2006; Roth et al., 2012).24

A variety of indices have been developed since the 1980s to evaluate the CUPrefs of a sequence (Ikemura, 1981;25

Freire-Picos et al., 1994; Urrutia and Hurst, 2001). Most of them compare the CUPrefs of a query against a reference set26

or against a Null Hypothesis chosen by the user (Shields et al., 1988; Lee et al., 2010). New indices are still developed27

(Zhang et al., 2012) but the "Codon Adaptation Index" (CAI) (Sharp and Li, 1987) and the "Effective Number of28

Codons" (ENC) (Wright, 1990) remain the most popular ones and are still being improved (Lee et al., 2010; Satapathy29

et al., 2017). Problematically, most CUPrefs indices have little reliability when analyzing sequences with either short30

length, strong GC content or strong amino acid composition bias (Roth et al., 2012). Furthermore, certain CUPrefs31

scores have limited biological meaning, and often require a certain knowledge of the studied organism to be interpreted32

correctly. For example, the FOP index requires the specification of a set of optimal codons (e.g. by determining the33

gene copy number of each tRNA in the studied organism) (Ikemura, 1981).34

Concomitantly to the development of new CUPrefs indices, numerous software packages to evaluate CUPrefs have35

been implemented, such as INCA (Supek and Vlahovicek, 2004), JCAT (Grote et al., 2005) and CodonW (Peden and36

Sharp, 2005). Even if most of these packages only compute the CAI and sometimes the ENC indices, some feature37
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new and exclusive methods such as CodonO and the "Synonymous Codon Usage Order" (SCUO) score (Wan et al.,38

2004; Angellotti et al., 2007). Still, a number of indices, such as the scaled χ2 (Shields et al., 1988) or the "Maximum-39

likelihood Codon Bias" (MCB) (Urrutia and Hurst, 2001), have never been made available to the scientific community40

via a dedicated software. To date, CodonW is the most complete software but it only displays outputs related to four41

CUPrefs indices (Peden and Sharp, 2005). This illustrates the need for a software capable of calculating CUPrefs for a42

wide set of indices. A final feature lacking in most softwares is the ability to perform statistical analyses, such as those43

developed in the e-cai server to assess the significance of CUPrefs differences between a query and a reference dataset44

(Puigbï¿œ et al., 2008b).45

We introduce here COUSIN (acronym for COdon Usage Similarity INdex), a novel index conceived to estimate CUPrefs46

with a straightforward biological interpretation. We implement this index together with seven other existing ones in47

an eponym Python3 software that is available for local or online use. To illustrate all the potentialities of COUSIN,48

we compare it to the well known CAI when analyzing eight complete Coding DNA Sequence (CDSs) datasets from a49

range of organisms with large differences in nucleotide composition and genome organization.50

2 New Approaches51

2.1 Measuring Codon Usage Preferences52

In this section, we introduce two versions of our COUSIN index (COUSIN18 and COUSIN59) and present CAI18, a53

modification of the CAI index introduced by Sharp et li Sharp and Li (1987) to allow comparison with COUSIN18. The54

notations used to define these indexes are given in Table 1.55

2.1.1 The COUSIN index56

We conceived COUSIN to evaluate the CUPrefs of a sequence while offering biologically meaningful results: the57

CUPrefs of a query are compared to those of a reference dataset, and the results of this comparison are normalized over58

a Null Hypothesis which assumes a random usage of synonymous codons.59

Table 1: Notations used to define COUSIN and CAI indexes

Symbol Description

c Codon

a Amino acid

f Frequency

ref Reference

que Query

H0 Null Hypothesis

L Query length

ka Synonymous codons of the amino acid a

A Amino acids existing in both query and reference

N The number of amino acids existing in both query and reference

3

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/600361doi: bioRxiv preprint first posted online Apr. 5, 2019; 

http://dx.doi.org/10.1101/600361
http://creativecommons.org/licenses/by-nc-nd/4.0/


COUSIN - a normalised measure of codon usage Preferences

The COUSIN score calculation involves four steps:60

1. Calculate deviation scores (devc,a) for each codon (c) of each amino acid (a) in the reference dataset, compared

to the Null Hypothesis:

devc,a = f ref
c,a − fH0

c,a

where f ref
c,a is the frequency of the codon c in the reference dataset and fH0

c,a the corresponding frequency under61

the Null Hypothesis.62

2. Define a weight for each codon (Wc,a), by multiplying the codon frequency in the reference by its deviation

score:

Wref
c,a = f ref

c,a × devc,a

3. Repeat step 2 for the codon frequencies in the query:

Wque
c,a = f que

c,a × devc,a

Using the same deviation score to calculate the weights allows us to compare the scores of the query and of63

the reference.64

4. The COUSINa
18 score of each amino acid is the ratio of the sum of the weights of all synonymous codons for

this amino acid in the query dataset over the corresponding sum of the weights in the reference dataset:

COUSINa
18 =

1

N
×

∑
c∈ka

Wque
c,a∑

c∈ka

Wref
c,a

where N is the number of amino acids present in both the query and the reference.65

5. The global COUSIN score is obtained by adding the COUSIN scores of all amino acids found in both the

query and the reference:

COUSIN18 =
∑
a∈A

COUSINa
18

where A is the set of amino acids present in both the query and the reference.66

By design, the results of COUSIN have an immediate interpretation and are directly suitable for hypothesis testing67

(Figure 1). COUSIN scores can be compared against two threshold values: a COUSIN score of 1 indicates that the68

CUPrefs in the query are similar to those in reference dataset, while a COUSIN score of 0 indicates that the CUPrefs69

in the query are similar to those in the Null Hypothesis (i. e. random usage of synonymous codons). Other COUSIN70

scores outside these two values can be interpreted as follows:71

• a COUSIN score above 1 indicates that CUPrefs in the query are similar to those in the reference but of larger72

magnitude, i. e. the more frequent codons in the reference are even more frequently used in the query;73

• a COUSIN score between 0 and 1 indicates that CUPrefs in the query are similar to those in the reference but74

of smaller magnitude, i. e. the more frequent codons in the reference are used in the query more often than in75

the Null hypothesis of equal frequency;76

• a COUSIN score below 0 indicates that CUPrefs in the query are opposite to those in the reference, i. e. the77

less used codons in the reference are used more often in the query than in the Null hypothesis of equal78

frequency;79
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Figure 1: Range of values and interpretation of COUSIN (top scale) and CAI (bottom scale) indexes.

2.1.2 Accounting for amino acid composition in CUPrefs80

It has been suggested that amino acid composition may affect the CAI score obtained for sequences with similar codon

usage, such that the lower the amino acid diversity in a sequence, the higher the bias (Roth et al., 2012). The version of

COUSIN described above, namely COUSIN18, assigns equal contribution to all amino acids. We therefore conceived

an alternative version of COUSIN, named COUSIN59, that accounts for amino acid composition in the query, by

weighting the contribution of each amino acid by its frequency in the query, as follows:

COUSINa
59 = f que

a ×

∑
c∈ka

W que
c,a∑

c∈ka

W ref
c,a

where f que
a is the frequency of the amino acid a in the query.81

The final step in the calculation of the index remains unchanged :

COUSIN59 =
∑
a∈A

COUSINa
59

In the classical CAI score, the amino acid composition of the query sequence is included in the calculation because all

codons contribute equally to the final score (see supplementary Informations 1 for a reminder of the CAI definition).

This calculation is analogous to our description of COUSIN59, and we therefore refer to it as CAI59. For the sake of

completeness, we introduce an alternative CAI definition, hereafter named CAI18, for which all amino acids contribute

equally. The difference between CAI18 and CAI59 simply lies in the calculation of the geoindexal mean, as follows:

CAI18 =

(∏
a∈A

∏
c∈ka

Occque
c,a

Occque
a

× wc,a

) 1
N

where Occque
a is the number of occurrences of the amino acid a in the query, Occque

c,a the number of occurrences of codon82

c in the query and wc,a the relative adaptiveness score (Supplementary Information 1).83

Both pairs COUSIN18 and COUSIN59, and CAI18 and CAI59 therefore differ in the way the amino acid composition84

is accounted for in the calculation. With the "18" methods, all amino acids contribute equally, independently of their85

frequency in the protein. These "18" methods can be envisioned as the "amino acid by amino acid" CUPrefs of a86

sequence. With the "59" methods, all individual codons contribute equally, so that the final contribution of each amino87
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acid is proportional to its frequency in the protein. These "59" methods can be envisioned as the "codon by codon"88

CUPrefs of a sequence.89

2.2 COUSIN software90

We designed a software package to implement our new COUSIN index along with other seven existing indices to91

facilitate CUPrefs analysis and comparisons between methods. Importantly, our software package can also perform92

statistical analyses by means of sequence data simulation. The COUSIN software and its documentation are accessible93

online at http://cousin.ird.fr. A local version can be downloaded from the same website to be used on a94

UNIX-like Operating System. This software is coded in Python3 programming language. In its local version, it runs95

through a Unix terminal in the form of command lines and accepts several parameters and options. To avoid ambiguities,96

we will refer to the software with the notation COUSIN.97

2.2.1 COUSIN architecture98

The main input data for COUSIN are query sequences in a FASTA format. Depending on the task performed, it may99

be necessary to provide additional input files such as a reference dataset in a kazusa-like codon usage table format100

(Nakamura et al., 2000). From these data, COUSIN performs a number of tasks either routinely or according to user101

specifications. At the end of a task, graphical and textual results are displayed.102

Figure 2 describes the global architecture of COUSIN.103

2.2.2 Available measures104

COUSIN currently features eight indices that involve CUPrefs and two indices that involve the amino acid composition105

of a sequence:106

• COUSIN18 and COUSIN59.107

• CAI18 and CAI59 (Sharp and Li, 1987).108

• Effective Number of Codons (ENC) (Wright, 1990).109

• Synonymous Codon Usage Order (SCUO) (Angellotti et al., 2007).110

• Frequency of Optimal Codons (FOP) (Ikemura, 1981).111

• Codon Bias Index (CBI) (Bennetzen and Hall, 1982).112

• Intrinsic CoDon bias Index (ICDI) (Freire-Picos et al., 1994).113

• scaled χ2 (Shields et al., 1988).114

• GRand AVerage of HYdropathy (GRAVY), that evaluates the grand average hydropathicity of a protein (Kyte115

and Doolittle, 1982).116

• The AROMAticity score (AROMA) that evaluates the average aromaticity of a protein (Lobry and Gautier,117

1994).118

.119
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Inputs

Data treatment

Query Reference Optional files 

CDSs in FASTA file 
Codon usage table 

in Kazusa format 

�� Pattern file 

(Analysis by pattern) 

�� Optimal codons file 

(FOP calculation) 

Input analysis

�� CUB scores 

�� Amino acid composition scores 

�� ATGC content 

�� Sequence length

Routine tasks

Options 

Codon usage table creation

Analysis on simulated queries

Analysis by pattern 

Optimization

Outputs

Graphical outputs Results of analysis

�� CUB scores 

�� Statistical analysis results

�� Task-specific results

�� Codon usage tables 

(codon usage table creation) 

�� FASTA file 

(optimization) 

Clustering analysis

Creation of 500 DNA sequences

�� Length of 100, 300 and 450 

codons 

�� Same CUB and amino acid

composition than reference

Ø� Statistical analysis against

queries

Simulation analysis

Data comparison

Figure 2: Architecture of the COUSIN software. The COUSIN software requires input data from the user such as

sequences in a FASTA format and a Codon Usage Table in a kazusa-style format (Nakamura et al., 2000). COUSIN then

performs a CUPrefs analysis on the queries by performing routine tasks. Following user specifications, other tasks can

be performed to complement the analysis. Graphical and textual outputs are given at the end of a COUSIN job.

2.2.3 COUSIN functioning120

Input data treatment121

The first and mandatory input taken by COUSIN is a FASTA file containing the query sequences. The software first122

checks whether each sequence in the input file contains nucleotide or amino acid characters. For DNA sequences, a123

second check is performed to determine whether they are coding sequences: the sequence must contain a number of124

nucleotides that is a multiple of 3 and, if it contains a STOP codon, it must be present at the end of the sequence. If any125
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of these conditions are not met, the sequence is removed from the analysis and the user is warned. Sequences bearing126

the same header than a sequence already analyzed are also put aside.127

Except for the codon usage table creation and data comparison additional steps (see 2.2.3), COUSIN requires the user to

enter a codon usage table in the kazusa-like format, to be used as reference set. COUSIN first validates the format of the

codon usage table before verifying that it is informative. Many indices to evaluate CUPrefs perform poorly if any of

the codons does not occur in the reference codon usage table, which often happens if this table is constructed from an

insufficient dataset. It is therefore recommended to use a reference based on a comprehensive CDS dataset, e.g. the

complete CDSs of the organism studied. In order to avoid comparisons against empty values, COUSIN replaces any null

codon frequency value in the reference dataset by an approximation calculated using a non-informative prior for codon

choice, as follows:

Occc =
1

61× (Occ(ref+1)
tot )

where Occref
tot is the total number of codons found in the reference.128

Outputs display129

By default, COUSIN displays all scores and statistical results in a Tabulated Separated Values (TSV) format. Depending130

on the additional steps instructed by the user, other files can be provided. As an example, a FASTA file containing131

optimized sequences is given at the end of an optimization (see 2.2.3).132

Routine tasks133

For any entry COUSIN initially performs the following calculations:134

• overall GC and nucleotide composition,135

• sequence length,136

• CUPrefs and amino acid composition scores for the indices described above.137

If instructed by the user, COUSIN performs simulations to assess whether the score of a query is statistically close to138

that of a standard CDS encoded by the reference. To do so, it generates 500 sequences following a "random-guided"139

selection of amino acids and codons (Puigbï¿œ et al., 2007), whereby the simulated sequences display average amino140

acid and CUPrefs frequencies similar to those used to construct the reference table. For each simulated sequence the141

CUPrefs scores are calculated and the 95% and 99% confidence intervals of the distributions of scores are estimated.142

The query’s score is then compared to the limits of these intervals. At the end of this step, COUSIN displays a graphical143

output that represents the range of values obtained during the simulation (Figure 3).144

Additional steps145

COUSIN proposes six additional steps to further analyse CUPrefs.146

A simulation step related to the query. Here, two datasets are generated, each of which is built using different147

assumptions:148
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Figure 3: Example of the graphical output displayed by COUSIN software at the end of the routine steps. The density

curves represent COUSIN18 scores of simulated sequences obtained with a "random-guided" selection following the

reference CUPrefs and amino acid composition (Puigbï¿œ et al., 2008a), using E. coli as an example. Orange, cyan and

purple curves refer respectively to sequences with a number of amino acids equal to 100 (short proteins), 300 (average

length of prokaryotic proteins) and 450 (average length of eukaryotic proteins). All curves are unimodal, with a mean

close to 1. As expected, the longer the sequence, the lower the variance and the higher the accuracy of the scores

obtained (Comeron and Aguadï¿œ, 1998; Roth et al., 2012). For each curve, the legend indicates the limits of 95% and

99% confidence intervals. Dashed vertical lines indicate the respective 95% interval for orange, cyan and purple curves.

1. Simulated sequences having the same length as the query. In this case, the simulation follows a random-guided149

selection for both amino acids and codons based on the average amino acid composition and CUPRefs in the150

reference.151

2. Simulated sequences having the same length and amino acid composition as the query. In this case, the random-152

guided method only selects codons that follow the CUPrefs of the reference (the amino acid composition can153

vary).154

The distribution of CUPrefs scores of each of these two datasets is then calculated and the query’s score is compared155

to the 95% and 99% confidence intervals of these two distributions. If it belongs to one dataset interval and not the156

other, this suggests that amino acid composition significantly impacts the CUPrefs score of the query. A Wilcoxon-157

Mann-Whitney U-test is performed on the two simulated datasets to check whether or not they have the same median158

score.159

An analysis of the query dataset following header patterns (the dataset must contain multiple queries). In this160

additional step, the user must submit a "pattern file" that contains a list of header patterns to COUSIN. Queries with the161

same patterns in their headers are analyzed altogether.162

A clustering step consisting in a K-means / X-means analysis on a set of variables obtained at the end of a COUSIN163

analysis (such as CUPrefs scores, GC content, length of query or frequencies of synonymous codons) (Pelleg and164
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Moore, 2000). The clustering results are then projected on the two first axis of a Principal Component analysis (PCA)165

performed in parallel. It is also possible to use a pattern file, similar to the header pattern analysis described above, to166

create specific clusters that are highlighted on the PCA results. In addition, a hierarchical clustering is performed. All167

the clustering results are stored in a file containing the header of each sequence analyzed and its corresponding cluster.168

Clustering graphs are also displayed at the end of the analysis.169

A sequence optimization step, the philosophy of which is similar to that of existing software packages (Puigbï¿œ170

et al., 2007; Grote et al., 2005; Supek and Vlahovicek, 2004). This additional step modifies the CUPrefs of a query to171

follow those in the reference. With COUSIN, three different types of optimizations can be performed:172

• A “Random Guided” optimization, where the codons are selected based on their frequency in the reference.173

This randomization can be guided towards a selection of synonymous codons maximizing GC or AT content.174

• A “Random” optimization, where a codon is randomly selected among the synonymous ones for each amino175

acid of the sequence. This randomization can be guided towards a selection of synonymous codons maximizing176

GC or AT content.177

• A “One amino acid, One codon” optimization, where each amino acid is represented by a unique codon (the178

one with the highest or lowest frequency in the reference).179

The creation of a codon usage table from a given dataset in a kazusa-like format from a set of FASTA sequences.180

Indeed, although some databases contain codon usage tables, one may still need to construct one from a specific dataset181

(Athey et al., 2017).182

A data comparison step, where COUSIN calculates the Euclidean distances between the vectors of synonymous183

codons or amino acids frequencies among multiple datasets. These datasets can be FASTA files or Codon Usage Tables184

in the kazusa-like format.185

With the exception of data comparison and creation of codon usage table, each additional step is performed after the186

routine steps described in section 2.2.3.187

3 Material and methods188

We illustrate the potential of the COUSIN index and compare it to the widely used CAI one by performing an analysis189

on the complete CDSs of eight highly unrelated organisms with contrasted GC content.190

3.1 Datasets191

For this benchmarking, we analyzed the full CDSs from two prokaryotes (Escherichia coli, Streptomyces coelicolor), a192

plant (Arabidopsis thaliana),a yeast (Saccharomyces cerevisiae), a protist (Plasmodium falciparum), a bird (Gallus193

gallus) and two mammals (Homo sapiens, Mus musculus) (Table 2). Some of these genomes were chosen because of194

their particularities:195

• P. falciparum and S. coelicolor genomes exhibit extreme GC content;196
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• the Gallus gallus genome consists of macrochromosomes and microchrosomes (Auer et al., 1987; Axelsson197

et al., 2005);198

• Gallus gallus, Mus musculus and Homo sapiens present very heterogeneous distributions of GC content within199

chromosomes (isochores) and/or between chromosomes (Costantini et al., 2006).200

3.2 Retrieving complete CDSs201

We extracted the complete CDSs from the eight genomes using the Emboss "extractfeat" function (Rice et al., 2000).202

For eukaryotic organisms, mitochondrial and chloroplast genomes were put aside to only keep the nuclear genome. A203

selection of the newly extracted CDSs was performed using the verification criteria described in section 2.2.3. To avoid204

redundancy during the creation of codon usage tables, only the first isoform among alternative spliced forms of a gene205

was kept. Finally, only CDSs with a length of at least 300 nucleotides were kept for the analyses. Indeed, most CUPrefs206

methods show strong biases when analyzing sequences shorter than 100 amino acids (Comeron and Aguadï¿œ, 1998;207

Roth et al., 2012). At the end of this step, we computed the number of CDSs and the overall GC percent found at the208

3rd base of each codon (GC3 content). These data are summarized in Table 2. An overview on global GC3 content of209

the organisms studied is given in Supplementary data 2.210

3.3 Building reference datasets and COUSIN analysis211

For each organism, we used the complete CDSs dataset to create a reference representing the average CUPrefs via212

the Codon Usage Table creation step proposed by COUSIN, and calculated the CUPrefs scores of each CDS against213

this reference. From this analysis, we created density curves of CAI and COUSIN scores to compare the two metrics.214

Finally, we performed a Pearson correlation coefficient test between COUSIN and CAI scores for all CDS in each215

organism.216

Table 2: Summary statistics of the complete CDSs of the eight organisms included in the analysis. The table shows the

species name, reference and accession number in the NCBI database, the number of protein-coding genes kept for the

analysis (evaluated by removing isoforms and rejected sequences), the total number of CDSs retrieved (as annotated

in genbank files), the ratio between the number of protein-coding genes and the total number of CDSs as well as the

global GC3 content found in protein-coding genes.

Species Reference Number of protein-coding genes Total Number of CDSs Ratio GC percent (3rd base)

Escherichia coli K-12 substr. MG1655 3244 4319 0.751 54.906%

Streptomyces coelicolor A3(2) 6356 8152 0.780 92.373%

Saccharomyces cerevisiae S288C (assembly R64) 5549 5989 0.927 39.211%

Plasmodium falciparum 3D7 (assembly ASM276v1) 4773 5334 0.895 17.797%

Homo sapiens Assembly GRCh38.p11 18492 115320 0.160 59.977%

Gallus gallus Assembly GRCg6a 15751 49767 0.316 60.635%

Mus musculus Assembly GRCm38.p6 20393 79262 0.257 58.641%

Arabidopsis thaliana Assembly TAIR10 24774 48148 0.515 42.717%
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4 Results217

4.1 COUSIN vs. CAI indexes218

Using the Codon Usage Tables created with COUSIN, we calculated the COUSIN and CAI scores for each CDS of219

each organism. The resulting density curves are presented in Figure 4. Individual data distributions are shown in220

Supplementary Information 3 along with GC3 content distribution and Pearson correlation tests between this GC3221

content and COUSIN59 or CAI59. The supplementary Information 4 give mean and Huber-M estimator values arising222

from this analysis.223

The analysis of CDSs with the COUSIN index highlights shared patterns as well as idiosyncrasies between organisms.224

All curves have a mean and Huber-M estimator score close to 1 (i.e. similar to that of the reference), but they strongly225

differ in terms of dispersion and of the global shape of data distribution, which can be unimodal (for E. coli, S. cerevisiae,226

A. thaliana, S. coelicolor and P. falciparum), bimodal (for H. sapiens and G. gallus) or flat with a number of local227

maxima (for M. musculus). These differences may arise due to multiple factors such as diversity in codon usage or228

overall and local GC3 content. We find only few noticeable differences between COUSIN18 and COUSIN59 scores229

distributions, suggesting that amino acid composition has, on average, little to no impact on overall CUPrefs within230

each studied organism.231

COUSIN values distribution curves from S. coelicolor and P. falciparum are unimodal and leptokurtic. The strong232

nucleotide compositional bias in these genomes (92.4% GC3 for S. coelicolor and 17.8% GC3 for P. falciparum)233

seems to explain these distributions with little variance, as suggested by the correlation between the two variables234

(Supplementary information 3, Pearson correlation scores of 0.933 for S. coelicolor and -0.920 for P. falciparum, both235

with p-values < 2.2−16). For other organisms with unimodal distribution but less biased nucleotide composition (e.g. E.236

coli, with 54.9% GC3), the distributions have a larger variance. The particular shapes of vertebrates curves might in237

turn be associated with local differences in GC3 content, as discussed below in section 4.2.238

The CDSs distributions obtained with the CAI scores have unimodal shapes and exhibit differences in their mean and239

dispersion, with the exception of G. gallus and H. sapiens that show once again particular shapes in the distribution of240

scores. As for COUSIN18 and COUSIN59, CAI18 and CAI59 display few to no differences.241

A major difference between COUSIN and CAI indexes resides in the immediate interpretation of the results. For242

COUSIN, since we compare the CUPrefs of individuals CDSs to a reference representing the overall CUPrefs of an243

organism, we expected an average score close to 1. For the CAI score however, in the absence of a fixed reference244

value, it is difficult to interpret the distribution. Moreover, the COUSIN index seems to better capture the impact245

of the GC3 content on CUPrefs (Supplementary Information 3). For larger genomes with strong local differences246

in nucleotide composition (e.g. chromosome isochores), the COUSIN data captures hitherto unreported patterns of247

CUPrefs distribution (Supplementary Informations 3).248

We further compared COUSIN59 and CAI59 scores of each organism using Pearson correlation tests. The results for E.249

coli and H. sapiens are shown in Figure 5), and the full results are in Supplementary Information 5. For all organisms,250

the correlation scores between COUSIN59 and CAI59 indexes is strong and positive, ranging from 0.661 in A. thaliana251

to 0.978 in S. coelicolor.252
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A

C

B

D

Figure 4: Density curves for COUSIN59 (A), COUSIN59 (B), CAI18 (C) and CAI59 (D) indices for the complete CDSs

of the eight organisms studied (see color legend).

4.2 COUSIN score in Vertebrates genomes253

The distribution of COUSIN59 scores and of GC3 content in H. sapiens, G. gallus and M. musculus are strongly254

correlated (Supplementary Information 3 with Pearson correlation scores of 0.940, 0.818 and 0.899, all with p-values255

< 2.2−16). The multiple peaks observed in H. sapiens and G. gallus distributions correspond to populations of CDSs256

with similar GC3 content, and we hypothesise that this reflects the genomic nucleotide composition heterogeneity257

within or between chromosomes. Indeed, isochores in vertebrates correspond to chromosomal stretches with relatively258
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Figure 5: Scatter plots of E. coli (A) and H. sapiens (B) CDSs scores between COUSIN59 (x-axis) and CAI59 (y-axis)

indexes. The regression line is given in red. Pearson’s correlation test results are indicated in the bottom-right of the

plots. Density curves indicating the distribution of scores are shown in black at the periphery of the scatter plot.

homogeneous and strongly biased GC3 content (Costantini et al., 2006) and microchromosomes of birds are more259

GC-rich than macrochromosomes (Auer et al., 1987; Axelsson et al., 2005). To test our hypothesis, we stratified each260

organism’s CDSs in three categories based on their COUSIN59 score:261

• "Top" CDSs are the 20% ones with the highest COUSIN59 score.262

• "Bottom" CDSs are the 20% ones with the COUSIN59 score.263

• "Middle" CDSs are the remaining 60 % of CDSs.264

Using the KaryoploteR package in R, we explored the relationship between the COUSIN and CAI scores, the GC3265

content, the isochores regions and the position of CDSs inside H. sapiens chromosomes (Figure 6). As anticipated, a266

CDS’ GC3 content is closely related to its position in the chromosome: GC-rich CDSs are more often found in GC-rich267

isochores with an opposite trend for AT-rich CDSs. Furthermore, "Top" CDSs are found in GC-rich isochores but are268

rare in AT-rich regions. "Middle-bottom" CDSs COUSIN scores are more often found in AT-rich regions, but are still269

present in GC-rich isochores. This distribution is not surprising, since in H. sapiens, the overall CUPrefs lean towards270

GC-rich synonymous codons, most likely reflecting the impact of GC-biased gene conversion (Pouyet et al., 2017;271

Galtier et al., 2018). Therefore, GC-rich CDSs, which are mainly found in GC-rich regions, tend to have a higher272

COUSIN score than the CDSs found in AT-rich regions. Finally, we note that AT-rich regions contain less CDSs than273

GC-rich ones.274

We further investigated changes in GC3 content and COUSIN score between chromosomes in the case of the G. gallus275

genome, which exhibits a large heterogeneity in chromosome size and a clear connection between chromosome size and276
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Figure 6: GC3 content scores (upper panel), COUSIN59 scores (middle panel) and structural information (lower panel)

of CDSs from H. sapiens chromosomes 1 (A) and 14 (B). Dot colours indicate "Top" (green), "Middle" (orange) or

"Bottom" (purple) CDSs. The x-axis shows the position of the CDSs in the chromosome by the distance from the

p-terminal to the q-terminal in Megabases. On the lower panels, colours indicate centromeres (red), isochores (with

a scale going from white for GC-rich isochores to black for AT-rich ones) and chromosomes particularities such as

secondary constrictions (blue).

both overall GC3 content and COUSIN59 scores (Figure 7A and B). Figure 9 shows the COUSIN59 and GC3 content277

Huber-M estimator values for each chromosome against their size (Huber et al., 1981). We find a clear correlation278

between the size of a chromosome and both the overall GC3 content and COUSIN59 of the CDSs it contains: the smaller279

the chromosome, the higher its overall GC3 content and COUSIN59 score (Figure 9 A and B, Spearman correlation280

scores of -0.863 for GC3 content and of -0.821 for COUSIN59, with p-values of 5.113−11 and of 2.698−9). Similarly,281

the smaller the chromosome, the higher the number of "Top" CDSs and the lower the number of "Bottom" CDSs (Figure282

7C). A similar but weaker trend is observed in H. sapiens genome, for which overall GC3 content and COUSIN59283

score also seem to correlate negatively with chromosome size (Figure 9C and D, Spearman correlation scores of -0.434284

for GC3 content and of -0.452 for COUSIN59 with p-values of 0.028 and of 0.035). We also find a weak relationship285

between chromosome size and the number of "Top", "Middle" and "Bottom" CDSs (Figure 8C). However, these results286

should be handled with care. Indeed, the Median Absolute Deviation (MAD) scores indicate a broad diversity of GC3287

content and COUSIN scores among the studied chromosomes (Supplementary Information 7). Further studies are288

required to analyse this connection between chromosome size, nucleotide composition and CUPrefs.289

5 Discussion290

In this study we introduce COUSIN, a new index to measure CUPrefs. This measure has a straightforward quantitative291

and qualitative meaning, therefore allowing for an easy comparison between the CUPrefs of the query CDS and those292

of both the reference and a random CUPrefs. We introduce two definitions of the COUSIN index (COUSIN59 and293

COUSIN18) depending on whether or not the amino acid composition of the analysed CDS is taken into account when294

estimating the similarity between its CUPrefs and those of the reference.295
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Figure 7: Per chromosome analysis of GC content and COUSIN59 scores in CDSs of G. gallus. Violin plots of A) GC3

content and B) COUSIN59 score along chromosomes of G. gallus. C) Proportions of "Top" (green), "Midldle" (orange)

and "Bottom" (purple) CDSs in each G. gallus chromosomes. The number of CDSs found in each chromosome is

shown above each bar.

We implemented the calculation of the COUSIN index, as well as of a number of additional features and exiting296

indices to evaluate CUPrefs, in an eponymous bioinformatic software, which is available in a stand-alone and in an297

online version (COUSIN, at http://cousin.ird.fr). This software also estimates confidence intervals of expected COUSIN298

values given the reference table and the length and composition of the query. Highlighting the limits of these intervals299

facilitates the evaluation of whether the CUPrefs of the query are significantly different from those expected for a300

sequence of the same length following the CUPrefs of the reference table.301

Finally, we illustrated the novelty and potential of the COUSIN index by applying it to an analysis on eight divergent302

organisms. During this study, we used the average CUPrefs of the organism as a reference. Importantly, our results303

show that the use of such average genomic CUPrefs as a sole reference may be more pertinent for certain organisms,304

such as P falciparum or S. coelicolor, and less pertinent for other, as exemplified for H. sapiens ad G. gallus. Using305

this kind of average reference may or not be relevant when analyzing CUPrefs, as it may allow a first comprehensive306

understanding of an organism, but may also hide crucial informations on, for example, the CUPrefs of specialized tissues307

in multicellular organisms. However, the capacity of COUSIN to highlight specificities in organisms while using such308

reference without preconception shows the strength of this index while analyzing CUPrefs. The analysis of the genomes309

of two organisms with extreme compositional bias compared to less biased organisms serves to highlight the ease of310
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Figure 8: Per chromosome analysis of GC content and COUSIN59 scores in CDSs of H. sapiens. Violin plots of A) GC3

content and B) COUSIN59 score along chromosomes of H. sapiens. C) Proportions of "Top" (green), "Midldle" (orange)

and "Bottom" (purple) CDSs in each H. sapiens chromosomes. The number of CDSs found in each chromosome is

shown above each bar.

interpretation of the COUSIN results and the connection between CUPrefs and nucleotide composition. Strikingly,311

COUSIN unveils a bimodal distributions of CUPrefs on the human and on the chicken genomes hitherto not described.312

We performed additional analyses that correlate these CUPrefs bimodal distributions with the GC3 distribution in these313

genomes as well as the specific genomic context of the corresponding CDSs in terms of chromosomal location.314

Overall, the novel COUSIN index and COUSIN software can serve as an intuitive and powerful software to analyse315

CUPrefs. Our results on the human genome will undoubtedly foster new research on the mutation-selection dynamics316

that pattern CUPrefs.317
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Figure 9: Scatterplots of Huber-M estimator values for GC3 content (A and C) and COUSIN59 (B and D) against

chromosome size in G. gallus (A and B) and H. sapiens (C and D). Each dot represents a chromosome with a color

indicated in legend. Vertical lines display the MAD values related to the Huber-M estimator ones.
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